Quantification of the source of errors in AM2 simulated tropical clear-sky outgoing longwave radiation
نویسندگان
چکیده
[1] The global and tropical means of clear-sky outgoing longwave radiation (hereinafter OLRc) simulated by the new GFDL atmospheric general circulation model, AM2, tend to be systematically lower than ERBE observations by about 4 W m , even though the AM2 total-sky radiation budget is tuned to be consistent with these observations. Here we quantify the source of errors in AM2-simulated OLRc over the tropical oceans by comparing the synthetic outgoing IR spectra at the top of the atmosphere on the basis of AM2 simulations to observed IRIS spectra. After the sampling disparity between IRIS and AM2 is reduced, AM2 still shows considerable negative bias in the simulated monthly mean OLRc over the tropical oceans. Together with other evidence, this suggests that the influence of spatial sampling disparity, although present, does not account for the majority of the bias. Decomposition of OLRc shows that the negative bias comes mainly from the H2O bands and can be explained by a too humid layer around 6–9 km in the model. Meanwhile, a positive bias exists in channels sensitive to near-surface humidity and temperature, which implies that the boundary layer in the model might be too dry. These facts suggest that the negative bias in the simulated OLRc can be attributed to model deficiencies, especially the large-scale water vapor transport. We also find that AM2-simulated OLRc has 1 W m 2 positive bias originating from the stratosphere; this positive bias should exist in simulated total-sky OLR as well.
منابع مشابه
Spectrally resolved fluxes derived from collocated AIRS and CERES measurements and their application in model evaluation: Clear sky over the tropical oceans
[1] Spectrally resolved outgoing thermal-IR flux, the integrand of the outgoing longwave radiation (OLR), has a unique value in evaluating model simulations. Here we describe an algorithm for deriving such clear-sky outgoing spectral flux through the entire thermal-IR spectrum from the collocated Atmospheric Infrared Sounder (AIRS) and the Clouds and the Earth’s Radiant Energy System (CERES) me...
متن کاملSpectrally resolved fluxes derived from collocated AIRS and CERES measurements and their application in model evaluation: 2. Cloudy sky and bandbyband cloud radiative forcing over the tropical oceans
[1] We first present an algorithm for deriving cloudy sky outgoing spectral flux through the entire longwave spectrum from the collocated Atmospheric Infrared Sounder (AIRS) and Cloud and the Earth’s Radiant Energy System (CERES) measurements over the tropical oceans. The algorithm is similar to the one described in part 1 of this series of studies: spectral angular dependent models are develop...
متن کاملObserved and simulated seasonal co-variations of outgoing longwave radiation spectrum and surface temperature
[1] We analyze the seasonal variations of Outgoing Longwave Radiation (OLR) accompanying the variations in sea surface temperature (SST) from satellite observations and model simulations, focusing on the tropical oceans where the two quantities are strikingly anti-correlated. A spectral perspective of this ‘‘super-greenhouse effect’’ is provided, which demonstrates the roles of water vapor line...
متن کاملEstimation of Net Radiation Using Satellite Based Data Inputs
Daily net surface radiation fluxes are estimated for Indian land mass at spatial grid intervals of 0.1 degree. Two approaches are employed to obtain daily net radiation for four sample days viz., November 19, 2013, December 16, 2013, January 8, 2014 and March 20, 2014. Both the approaches compute net shortwave and net longwave fluxes, separately and sum them up to obtain net radiation. The firs...
متن کاملAn assessment of climate feedback processes using satellite observations of clear-sky OLR
[1] Clear-sky longwave radiative feedback processes depicted in climate models prepared for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) are investigated using satellite observations of the clear-sky outgoing longwave radiation (OLR). Estimates of clear-sky longwave radiative damping are derived from regional, seasonal, and interannual sources of variabili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006